Instrument Depth range (m),
Boyer et al, 2018b
Estimated uncertainty for T (°C) Estimated uncertainty for sample depth References
Animal mounted recorder 0 - 2000 0.005 (0.5 for MKR3 TTDR sensor)  - Atkinson et al., 2014
0.5 (Mk 3 data recording tags (Wildlife Computers, Seattle, Washington)) <2m up to 450m; <4m deeper than 450m Boehlert et al, 2001
0.1 (Mk 9 and Mk10 archival tags); 0.005 (CTD-SRDL, elephant seals) 2 dbar (0.3 to 0.035%*reading)/ K Boyer et al., 2018b
CTD (downcast) 0 - 8000 0.002 (0.05 for RBR instruments) 0.015% full scale Atkinson et al., 2014;
Saunders et al, 1991
0.001 -  Thomson & Emery, 2014
0.001  0.015% full scale Gouretski & Reseghetti, 2010
0.001 - 0.005 0.015-0.08% in pressure Boyer et al., 2018b
Digital Bathythermograph 0 - 6000 0.05 - Atkinson et al., 2014
Drifting Buoy 0 - 400 0.002 - 0.01 <2dbar (SBE 43);
1% in pressure (SBE37 IM)
Boyer et al, 2018b
0.26 -  Woodruff et al 2011
Glider 0 - 1200 0.002 -  Atkinson et al., 2014
0.001 - 0.005 0.015-0.08% in pressure Boyer et al, 2018b
MBT 0 - 300 0.3 -  Atkinson et al., 2014
0.1 - Gouretski and Reseghetti., 2010
0.2°F 2-3% Couper and LaFond, 1969
0.1 (Soviet MBTs)   State Oceanographic Institute, 1977
Micro Bathythermograph 0 - 700 0.002 (0.05 for RBR instruments) - Atkinson et al., 2014
0.002 (Seabird);
0.1 (resolution, RBR)
0.1% full scale in pressure Boyer et al, 2018b
Moored Buoy 0 - 6000 0.002 - 0.09 - Boyer et al, 2018b
0.02 - 0.36 Atkinson et al., 2014
0.3 - Woodruff et al, 2011
Ocean Station Data (Bottle, Buckets and low resolution STD, CTD, XCTD) 0 - 8000 0.02  - Atkinson et al., 2014
- >5% Brennecke, 1921
Profiling float 0 - 2000 0.002 (Argo);
0.005 (pre Argo)
2.4 dbar Davis et al, 2001;
Boyer et al., 2018b
0.002 - Atkinson et al., 2014
STD 0 - 1000 Thomson & Emery, 2014;
 0-6000dbar Molinelli & Kirwan, 1980
0.002 - Atkinson et al., 2014
0.15  (early models);
0.05  (later models, eg Plessey 9040)
- Thomson & Emery, 2014
0.02 0.25% of full scale (Plessey STD);
0.1% full scale (Grundy CSTD)
Molinelli & Kirwan, 1980
Undulating Oceanic Recorders 0 - 350 0.01 - Atkinson et al., 2014
XBT 0 - 1830 0.15 Atkinson et al., 2014
0.2 Gouretski and Reseghetti, 2010;
Kizu and Hanawa, 2002
0.1 (Sippican & TSK);
0.15 (Sippican Submarine probes)
2% (or 4.6m, whichever is greater) Boyer et al., 2018b
0.1 2% (or 4.6m, whichever is greater) Lockheed Martin, 2013
XCTD 0 - 1900 0.02 -  Atkinson et al., 2014;
Boyer et al., 2018b
0.02 (TSK) 5m or 2% of depth Mizuno & Watanabe, 1998
0.01 - 0.02 - Johnson, 1995
0.012 - Elgin, 1994
0.02 post-1998 4% pre-1998 Sy, A, 1993
0.06 pre-1998 2% post-1998 Sy, A, 1998
References
Atkinson, C. P., Rayner, N. A., Kennedy, J. J., and Good, S. A. (2014). An integrated database of ocean temperature and salinity observations. J. Geophys. Res. Oceans 119, 7139–7163. doi: 10.1002/2014JC010053
Boehlert, G. W., Costa, D. P., Crocker, D. E., Green, P., O'Brien, T., Levitus, S., et al. (2001). Autonomous pinniped environmental samplers: using instrumented animals as oceanographic data collectors. J. Atmos. Ocean. Technol. 18, 1882–1893. doi: 10.1175/1520-0426(2001)018<1882:APESUI>2.0.CO;2
Boyer, T. P., Baranova, O. K., Coleman, C., Garcia, H. E., Grodsky, R. A., Mishonov, A. V., et al. (2018b). World Ocean Database 2018. Technical report, NOAA Atlas NESDIS 87.
Brennecke, W. (1921). Die ozeanographischen Arbeiten der Deutschen Antarktischen Expedition 1911-1912. University of California Libraries, Hamburg.
Couper, B., and LaFond, E. (1969). The Mechanical Bathythermograph an Historical Review. Technical report, US Navy.
Davis, R. E., Sherman, J. T., and Dufour, J. (2001). Profiling ALACEs and other advances in autonomous subsurface floats. J. Atmos. Ocean. Technol. 18, 982–993. doi: 10.1175/1520-0426(2001)018<0982:PAAOAI>2.0.CO;2
Elgin, R. R. H. (1994). “An evaluation of XCTD performance with design improvements,” in Proceedings of OCEANS'94 (Brest: IEEE). doi: 10.1109/OCEANS.1994.363868
Gouretski, V., and Reseghetti, F. (2010). On depth and temperature biases in bathythermograph data: development of a new correction scheme based on analysis of a global ocean database. Deep Sea Res. I Oceanogr. Res. Pap. 57, 812–833. doi: 10.1016/j.dsr.2010.03.011
Johnson, G. C. (1995). Revised XCTD fall-rate equation coefficients from CTD data. J. Atmos. Ocean. Technol. 12, 1367–1373. doi: 10.1175/1520-0426(1995)012<1367:RXFREC>2.0.CO;2
Kizu, S., Sukigara, C., and Hanawa, K. (2011). Comparison of the fall rate and structure of recent T-7 XBT manufactured by Sippican and TSK. Ocean Sci. 7, 231–244. doi: 10.5194/os-7-231-2011
Mizuno, K., and Watanabe, T. (1998). Preliminary results of in-situ XCTD/CTD comparison test. J. Oceanogr. 54, 373–380. doi: 10.1007/BF02742621
Lockheed Martin (2013). Expendable Bathythermograph Expendable Sound Velocimeter (XBT/XSV) Expendable Profiling Systems. Technical report, Lockheed Martin.
Molinelli, E., and Kirwarn, A. (1980). Requirements for an Historical Stratification File Using STD and CTD Data. Technical report, Science Applications, Inc., McLean, VA.
Saunders, P. M., Mahrt, K.-H., and Williams, R. T. (1991). Standards and Laboratory Calibration. Technical report, WHP Operations and Methods.
State Oceanographic Institute (1977). Manual on Hydrographic Works at Sea, 2nd Edn. Leningrad: Gidrometeoizdat.
Sy, A. (1993). Field Evaluation of XCTD performance. Int. WOCE Newslett. 14, 33–37.
Sy, A. (1998). At-sea test of a new XCTD system. Int. WOCE Newslett. 31, 45–47.
Thomson, R., and Emery, W. (2014). Data Analysis Methods in Physical Oceanography, 3rd Edn. Amsterdam: Elsevier Science.
Woodruff, S. D., Worley, S. J., Lubker, S. J., Ji, Z., Eric Freeman, J., Berry, D. I., et al. (2011). ICOADS release 2.5: extensions and enhancements to the surface marine meteorological archive. Int. J. Climatol. 31, 951–967. doi: 10.1002/joc.2103